Светодиод – один из самых распространенных компонентов, встречающихся в современной технике. Светодиоды применяются для индикации состояния работы приборов, а также для подсветки или в качестве фонарей. По диапазону излучения выделяют светодиоды видимого диапазона (красные, желтые, зеленые, белые) и светодиоды инфракрасного или ультрафиолетового излучения (пульты дистанционного управления).

Светодиоды по своей структуре относятся к полупроводниковым приборам, таким диод или тиристор. Поэтому развитие светодиодов неразрывно связано с развитием полупроводников. Светодиод обладает односторонней проводимостью, благодаря одному p-n переходу. В начале 20 века советский ученый Олег Владимирович Лосев обратил внимание на свечение кристаллов полупроводников, возникающее при включении полупроводника в прямом направлении. В то время свечение было едва заметно, однако именно это свойство полупроводников и легло в основу развития светодиодной техники.



Рисунок 1

Современные светодиоды позволяют выбрать любую гамму излучения за счет применения легирующих примесей в p-n переход. Например, фосфор позволяет получить красный оттенок, алюминий – желтый, галлий – зеленый или голубой. Еще один способ изменения цвета свечения светодиода – введение люминофора, позволяющего давать видимый свет при воздействии на него другого излучения. Для светодиодов добавление люминофора в кристалл голубого свечения получается белый цвет. Применение фокусирующей линзы позволяет увеличить интенсивность излучения.

Развитие технологий позволило создать двухцветный светодиод. Двухцветные светодиоды могут выпускаться с тремя (рисунок 2) или двумя выводами. Для последних изменение свечения происходит при изменении направления тока.



Рисунок 2

Стоит отметить, что при подключении светодиодов в любую цепь последовательно с ним необходимо подключать балластное сопротивление. Большинство современных светодиодов выпускаются со встроенным токоограничивающим сопротивлением.

Как известно, работа светодиода зависит от величины тока, т. е. светодиод можно подключить даже к сети с напряжением в 220В, но с ограничителем тока в цепи. Прямое напряжение для большинства светодиодов превышает 2В, поэтому одной батарейки с напряжением в 1,5В не всегда будет достаточно для работы светодиода. Стандартный ряд напряжений начинается с 3В, а наиболее часто используются светодиоды на напряжение 12В. Еще одна важная характеристика светодиодов – величина обратного напряжения. Обычно обратное напряжение не превышает 100В, поэтому для защиты светодиодов применяют схемы встречно-параллельного выключения (рисунок 3).



Рисунок 3

Рассмотрим несколько устройств, в которых используются светодиоды. Большинство из них строятся на базе микроконтроллеров, дабы упростить схему и сократить количество элементов на плате.

Первое устройство представляет собой блок управления двухцветным светодиодом с тремя выводами (рисунок 4). Принцип работы схемы следующий: при одинаковых потенциалах на входах IN1 и IN2 на выводах OUT1 и OUT2 потенциалы также одинаковы и светодиоды погашены. При наличии сигнала высокого уровня на одном из входов загорается один из светодиодов HL1 или HL2. Регулировка яркости свечения светодиода осуществляется напряжением на входе Vref.



Рисунок 4

Расчет и выбор балластного сопротивления R2 основывается на законе Ома. Исходные данные для расчета: напряжение питания 12В, прямой ток светодиода 10мА, падение напряжения на светодиоде 2В. Тогда сопротивление R2 можно рассчитать по формуле:

[size=16]
R2 = (Uпит-U) / I = (12 - 2) / 0,010 = 1000(Ω) или 1КОм


Трехцветные светодиоды (RGB-светодиоды)

RGB-светодиоды, в первую очередь, предназначены для создания декоративной подсветки. RGB-светодиод имеет четыре вывода, а для управления его работой применяют специальные контроллеры. На базе RGB-светодиодов строятся светодиодные ленты. Трехцветные светодиоды позволяют создавать практически любой оттенок. Ниже приведена схема подключения трехцветного светодиода (Рисунок 5).



Рисунок 5

В основе RGB-светодиода лежат три излучателя. Сопротивления в схеме подобраны таким образом, чтобы свет светодиода был белым. Устройство, собранное по приведенной схеме (рисунок 6) применяется для подсветки в автомобиле.



Рисунок 6

Еще один вариант использования светодиодов в автомобиле – это схема подсветки номера (рисунок 7).



Рисунок 7

В схеме применяются шесть светодиодов с максимальным током 35 мА (ток ограничен на уровне 27мА стабилизатором тока DA1) и световым потоком в 4 лм.

Как отмечалось ранее, для питания светодиодов не достаточно одной батарейки с напряжением 1,5В. Однако существует схема преобразователя для питания белого светодиода от одной батарейки (рисунок 8). Принцип работы схемы: при низком уровне сигналов на выводах микроконтроллера РВ1 и РВ2, высоком уровне на выводах РВ0 и РВ4 происходит зарядка конденсаторов С1 и С2 до напряжения 1,4В. При изменении сигналов микроконтроллера к светодиоду прикладывается напряжение от двух заряженных конденсаторов и батарейки, что в сумме дает около 4,5В. Частота зажигания светодиода определяется частотой выходных сигналов микроконтроллера.



Рисунок 8

Аналогичную схему можно собрать на базе логических микросхем (рисунок 9).



Рисунок 9

Светодиоды достаточно надежные элементы, поэтому зачастую их используют в нескольких схемах, просто выпаивая элемент из уже ненужной платы. Однако при этом необходимо определить полярность светодиода для дальнейшего его использования. Прозвонка светодиодов мультиметром не всегда дает однозначный вывод о работоспособности диода, поэтому лучшим вариантом для проверки светодиодов является их проверка через подключение к источнику питания. Проверку любого светодиода следует выполнять через ограничивающий резистор номиналом от 200 до 500 Ом (рисунок 10) и выходным напряжением источника питания не менее 4,5В.



Рисунок 10

Еще один момент, на который необходимо обратить внимание при использовании светодиодов - это правильное подключение нескольких светодиодов в одну цепь (рисунок 11).



Рисунок 11

Стоит отметить, что двух одинаковых светодиодов не бывает. Поэтому имеется определенный разброс параметров светодиодов, особенно это сказывается на схемах параллельного включения светодиодов. При параллельном включении светодиодов необходимо подбирать балластное сопротивление под каждый светодиод в отдельности, так как небольшое отклонение в падении напряжения на элементе не позволит добиться одинаковой яркости свечения для всех светодиодов.

Практика применения светодиодов:
Самодельный светильник из светодиодной ленты
Светодиодные деревья - новый вид праздничной светотехники
Делаем светодиодную подсветку салона автомобиля

Статьи по теме:

Как подключить светодиодную ленту
Питание светодиодных лент
Блоки питания для светодиодных лент





Всего комментариев: 0



Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


Новости сайта ukrelektrik.com


Последние статьи ukrelektrik.com


Последние ответы на форуме ukrelektrik.com