Испытание кабелей


Силовая кабельная линия - это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

№ п/п

Наименование материалов

Температурный коэффициент объемного расширения на 1°С при 20°С

1

Медь

50

2

Алюминий

77

3

Свинец

87

4

Полиэтилен высокого давления

0-50°С - 670 50-100°С - 1560-1650

5

Полихлорвиниловый пластикат

70-200

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Изоляция жил

Напряжение кабеля, кВ

Длительно допустимая температура жил кабеля, РС

Допустимый нагрев жил при токах короткого замыкания, °С

Бумажная пропитанная

1-6

10

20

35

80

65

65

60

200

200

130

130

Пластмассовая:

   

поливинилхлоридный

пластикат

 

70

160

полиэтилен

 

70

130

вулканизирующийся

полиэтилен

 

90

250

Резиновая

 

65

150

Резиновая повышенной теплостойкости

 

90

250

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена – 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Коэффициент предварительной нагрузки

Прокладка кабеля

Допустимая перегрузка длительностью, час.

0,5

1

3

0,6

В земле

В воздухе

В трубах (в земле)

1,35

1,25

1,3

1,15

1,1

1,1 5

1,1

1,0

0,8

В земле

В воздухе

В трубах (в земле)

1,2

1,15

1,1

1,15

1,0

1,05

1,1

1,05

1,0

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента - кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

а) солончаковые; б) известковые; в) песчаные; г) черноземные; д) глинистые; е) торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Конструктивный элемент кабеля

Материал

Буквенное обозначение

Жила

Медь Алюминий

Нет буквы А

Изоляция жил

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Поясная изоляция

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Оболочка

Свинцовая Алюминиевая гладкая Алюминиевая гофрированная Поливинилхлоридная Полиэтиленовая негорючая резина

С А Аг
В П Н

Подушка

Бумага и битум Без подушки Полиэтиленовая (шланг) Поливинилхлоридная: один слой пластмассовой ленты типа ПХВ два слоя пластмассовой ленты типа ПХВ

Нет буквы б в

л

Броня

Стальная лента Проволока плоского сечения Проволока круглого сечения

Б
П К

Наружный кабельный покров

Кабельная пряжа Без наружного кабельного покрова Стеклянная пряжа из штапелированного волокна (негорючий кабельный покров) Полиэтиленовый шланг Поливинилхлоридный шланг

Нет буквы,

Г

Н Шп

Шв

Примечание: 1. Буквы в обозначении кабеля располагаются в соответствии с конструкцией кабеля, т.е. начиная от материала жилы и заканчивая наружным кабельным покровом.

2. Если в конце буквенной части марки кабеля стоит буква "П", написанная через черточку, то это означает, что кабель имеет по сечению плоскую форму, а не круглую.

3. Обозначение контрольного кабеля отличается от обозначения силового кабеля только тем, что после материала жилы кабеля ставится буква "К".

После букв стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее широкое применение находят кабели следующих стандартных сечений жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.


Объем приемо-сдаточных испытаний.

В соответствии с требованиями ПУЭ объем приемо-сдаточных испытаний силовых кабельных линий включает следующие работы.

1. Проверка целостности и фазировки жил кабеля.

2. Измерение сопротивления изоляции.

3. Испытание повышенным напряжением выпрямленного тока.

4. Испытание повышенным напряжением промышленной частоты.

5. Определение активного сопротивления жил.

6. Определение электрической рабочей емкости жил.

7. Измерение распределения тока по одножильным кабелям.

8. Проверка защиты от блуждающих токов.

9. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

11. Контроль состояния антикоррозийного покрытия.

12. Проверка характеристик масла.

13. Измерение сопротивления заземления.

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13.

Силовые кабельные линии напряжением выше 1 кВ и до 35 кВ - по п.п.1-3, 6, 7, 11, 13, а напряжением 110 кВ и выше - в полном объеме, предусмотренным настоящей инструкцией.

Проверка целостности и фазировки жил кабеля.

Перед включением кабеля в работу производится его фазировка, т.е. обеспечивается соответствие фаз кабеля фазам присоединяемого участка электроустановки. Проверка производится прозвонкой с помощью телефонных трубок или мегаомметра. На основании проверки производится раскраска жил в соответствии с раскраской принятой на данной установке.

Технология "прозвонки" с помощью телефонных трубок заключается в следующем: один работник подсоединяет свою телефонную трубку к жиле кабеля и оболочке (заземленной части электропроводки), а другой поочередно к жилам кабеля со своей стороны, пока не дойдет до той жилы, к которой подключился первый работник. При этом устанавливается телефонная связь между работниками и они могут договориться о порядке проверки другой жилы. На проверенные жилы навешивают временные бирки с соответствующей маркировкой. Проверка жил "прозвонкой" будет успешной, если исключить возможность образования обходных цепей. Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле; для этого подсоединяют трубку к каждой из оставшихся жил и убеждаются, что связи по ним нет. Для "прозвонки" используют низкоомные телефонные трубки, а в качестве источника питания - батарейку от карманного фонаря.

После предварительной прозвонки перед включением кабельной линии в работу производится фазировка ее под напряжением. Для этого с одного конца кабеля подается рабочее напряжение, а с другого конца производится проверка соответствия фаз измерениями напряжений между одноименными и разноименными фазами. Газировка производится вольтметрами (в сетях до 1кВ) или вольтметрами с трансформаторами напряжения, а также с помощью указателей напряжения типа УВН-80, УВНФ и др. (в сетях напряжением выше 1 кВ)

Измерение сопротивления изоляции.

Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется, но должно быть порядка десятка МОм и выше. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Методика измерения сопротивления и приборы, используемые при этом, представлены испытаниях изоляции электрооборудования повышенным напряжением.

Перед началом измерения сопротивления изоляции на кабельной линии необходимо:

1.      Убедиться в отсутствии напряжения на линии.

2.      Заземлить испытуемую цепь на время подключения прибора.

После окончания измерения, прежде чем отсоединять концы от прибора необходимо снять накопленный заряд путем наложения заземления.

Разрядку кабеля необходимо производить при помощи специальной разрядной штанги сначала через ограничительное сопротивление, а затем накоротко. Короткие участки кабеля длиной до 100 м можно разряжать без ограничительного сопротивления.

При измерении сопротивления изоляции кабельных линий большой длины, необходимо помнить, что они обладают значительной емкостью, поэтому показания мегаомметра следует отмечать только после окончания заряда кабеля.

Категорически запрещается измерять сопротивление изоляции на кабельной линии, если она хотя бы на небольшом участке проходит вблизи другой линии, находящейся под напряжением.

Испытание повышенным напряжением выпрямленного тока.

Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.

Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей

Тип кабеля

Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

10

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

-

6

12

-

-

-

-

-

5

Пластмассовая

-

15

-

-

-

-

-

-

10

Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.

При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ - со скоростью не более 0,5 кВ/с.

В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.

Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.

При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.

Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.

При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.

После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.

Испытание повышенным напряжением промышленной частоты.


Испытание повышенным напряжением промышленной частоты допускается

производить для линий 110-220 кВ взамен испытания повышенным напряжением выпрямленного тока.

Величины испытательного напряжения промышленной частоты приведены в табл. 6.

Таблица 6. Величины испытательного напряжения промышленной частоты

Рабочее напряжение кабеля, кВ

Испытательное напряжение кВ

Испытательное напряжение по отношению к земле, кВ

Продолжительность испытания, мин

110

220

130

5

220

500

288

5

Методика испытания и установки для испытания изоляции повышенным напряжением промышленной частоты приведены испытаниях изоляции электрооборудования повышенным напряжением.

Определение активного сопротивления жил.


Производиться для линий напряжением 35 кВ и выше.

Активное сопротивление жил кабельной линии постоянному току, приведенные к 1 мм сечения, 1 м длины и температуре + 20 С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

Активное сопротивление жил кабелей постоянному току представлены в табл. табл. 7, 13.8.

Методики измерения и необходимые приборы приведены.

Таблица 7. Активное сопротивление жил кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км

Сечение, мм

Сопротивление, Ом/км

16

1,15/1,95

95

0,194/0,33

25

0,74/1,26

120

0,153/0,26

35

0,52/0,88

150

0,122/0,207

50

0,37/0,63

185

0,099/0,168

70

0,26/0,44

240

0,077/0,131

Примечание: в числителе указано для медной, а в знаменателе для алюминиевой жилы.

Таблица 8. Активное сопротивление жил маслонаполненных кабелей постоянному току при температуре +20°С

Сечение, мм

Сопротивление, Ом/км*

Сечение, мм

Сопротивление, Ом/км*

Низкого давления

Высокого давления

Низкого давления

Высокого давления

120

0,1495

0,1513

400

0,04483

0,04453

150

0,1196

0,1209

500

0,03587

0,03575

185

0,09693

0,09799

550

0,03260

0,03295

240

0,07471

0,07601

625

0,02869

0,02846

270

0,06641

0,06593

700

-

0,02562

300

0,05977

0,06040

800

0,02242

-

350

0,05123

-

-

-

-